O Level E Maths Tutorial 5: Algebraic expressions and formulae

Syllabus:

• using letters to represent numbers

- interpreting notations:
 - ab as $a \times b$

-
$$\frac{a}{b}$$
 as $a \div b$ or $a \times 1/b$

- a^2 as $a \times a$, a as $a \times a \times a$, a^2b as $a \times a \times b$, ...
- 3y as y + y + y or $3 \times y$
- -3(x + y) as $3 \times (x + y)$
- -(3+y)/5 as $(3+y) \div 5$ or $1/5 \times (3+y)$

an expression for the total amount they spend.

• evaluation of algebraic expressions and formulae

- 1. Let a be 3 and b be 5. Find
 - (i) 2*a*
 - (ii) 2a + 3b
 - (iii) ab
 - (iv) a/b^2

• translation of simple real-world situations into algebraic expressions

2. A class has 8 boys and 9 girls. Each boy spends x dollars. Each girl spends y dollars. Write down

• recognising and representing patterns/relationships by finding an algebraic expression for the *n*th term

- 3. In the following sequence, write down an expression for the nth term.
 - (i) 2, 4, 6, 8,

Dr Hock's Maths Tuition

(ii)
$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$$

• addition and subtraction of linear expressions

- 4. (i) Add (2x + 1) to (3x 4).
 - (ii) Subtract (2x + 1) from (3x 4).
- simplification of linear expressions such as:

$$-2(3x-5) + 4x$$

$$\frac{2x}{3} - \frac{3(x-5)}{2}$$

- 5. Simplify these expressions:
 - (i) -2(3x-5) + 4x
 - (ii) $\frac{2x}{3} \frac{3(x-5)}{2}$

• use brackets and extract common factors

- 6. Use a bracket and extract the common factor:
 - (i) 2x + 2y
 - (ii) 2x + 4y
 - (iii) 4x 2y
 - (iv) 3x + 9y

Dr Hock's Maths Tuition

• factorisation of linear expressions of the form ax + bx + kay + kby

7. Factorise (extract common factor) for each of the following:

- (i) x(a+b) + 2(a+b)
- (ii) x(x-3) + 2(x-3)
- (iii) ax + bx + kay + kby
- 8. Factorise $6x^2 y + 3xy 2x$

[N21/I/21(a)]

• expansion of the product of algebraic expressions

- 9. (i) x(x+2)
 - (ii) 3(x+2)
 - (iii) (x+3)(x+2)
 - (iv) (x-1)(x+2)

• changing the subject of a formula

- changing the subject of a formula
 finding the value of an unknown quantity in a given formula
- Inding the value of an unknown quantity in a given formula

10. y = 2x + 1

Rearrange to make x the subject

11. y = 2x + 1

Given that y is 9, find x.

Dr Hock's Maths Tuition

• use of:

-
$$(a+b)^2 = a^2 + 2ab + b^2$$

-
$$(a-b)^2 = a^2 - 2ab + b^2$$

-
$$a^2 - b^2 = (a + b)(a - b)$$

12. Expand the following:

(i)
$$(x+2)^2$$

(ii)
$$(x-2)^2$$

(i)
$$(x+2)(x-2)$$

• factorisation of quadratic expressions $ax^2 + bx + c$

13. Factorise these:

(i)
$$y = x^2 + 2x + 1$$

(ii)
$$y = x^2 + 3x + 2$$

(iii)
$$y = x^2 - 3x + 2$$

(iv)
$$y = x^2 - x - 2$$

• multiplication and division of simple algebraic fractions such as:

$$\left(\frac{3a}{4a^2}\right)\left(\frac{5ab}{3}\right)$$

$$\left(\frac{3a}{4} \div \frac{9a^2}{10}\right)$$

14. Simplify:

(a)
$$\left(\frac{3a}{4a^2}\right)\left(\frac{5ab}{3}\right)$$

(b)
$$\left(\frac{3a}{4} \div \frac{9a^2}{10}\right)$$

• addition and subtraction of algebraic fractions with linear or quadratic denominator such as:

$$\frac{1}{x-2} - \frac{2}{x-3}$$

$$\frac{1}{x^2-9} + \frac{2}{x-3}$$

$$\frac{1}{x-3} + \frac{2}{(x-3)^2}$$

15. Simplify:

(a)
$$\frac{1}{x-2} - \frac{2}{x-3}$$

(b)
$$\frac{1}{x^2-9} + \frac{2}{x-3}$$

(c)
$$\frac{1}{x-3} + \frac{2}{(x-3)^2}$$